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Summary

A valuable and robust extension of the traditional joint mean and the covariance models when
data subject to outliers and/or heavy-tailed outcomes can be achieved using the joint modelling
of location and scatter matrix of the multivariate t-distribution. This model encompasses three
models in itself, and the number of unknown parameters in the covariance model increases qua-
dratically with the matrix size. As a result, selecting the important variables becomes a crucial as-
pect to consider. In this context, the variable selection combined with the parameter estimation is
considered under the normality assumption. However, because of the non-robustness of the normal
distribution, the resulting estimators will be sensitive to outliers and/or heavy taildness in the data.
This paper has two objectives to overcome these problems. The first is to obtain the maximum like-
lihood estimates of the parameters and propose an expectation-maximisation type algorithm as an
alternative to the Fisher scoring algorithm in the literature. We also consider simultaneous param-
eter estimation and variable selection in the multivariate t-joint location and scatter matrix models.
The consistency and oracle properties of the regularised estimators are also established. Simulation
studies and real data analysis are provided to assess the performance of the proposed methods.
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1 INTRODUCTION

In biomedical, sociological, and economic studies, it is common to investigate a problem by
observing multiple outcomes over time for the same subject repeatedly. Therefore, longitudinal
data arise more frequently in various scientific domains involving extensive research. Unlike
other types of multivariate data, the assumption of independence between different subjects
and dependency within each subject often poses a fundamental challenge for statistical model-
ling. A popular approach to analysing the longitudinal data is to use the joint location and scat-
ter matrix model (JLSM) defined as follows.
Suppose that we havem subjects, with response from each subject i ∈ 1; …; mf gmeasured ni

times. Let Yi ¼ Y i1; …; Y inið ÞT be the ni repeated measurements at time point ti ¼
ti1; …; tinið ÞT of the i -th subject. Assume that for each i ∈ 1; …; mf g , the responses are
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independent. LetYi’s come from any distribution with location vector μi, scale Σ i and the JLSM
is defined as

Y i ∼ : μi; Σ ið Þ (1)

where Σ i ¼ σij
� �

is the ni � ni positive definite scatter matrix. Here, the most common way to
model the location is to use a linear model. In JLSMs, the estimation of a covariance matrix is
an important problem. The current literature on modelling covariance matrices for multivariate
longitudinal data relies on decompositions of the covariance matrices. The sample covariance
matrix is known to be a positive-definite and unbiased estimator of a covariance matrix. How-
ever, it is pretty unstable when the dimension of the covariance matrix is large (Huang
et al., 2006; Lin, 1985; Wong et al., 2003). It is also difficult to keep the estimated matrix pos-
itive definite. To handle this difficulty, Pourahmadi (1999, 2000) has developed the following
modified Cholesky decomposition (MCD) and guaranteed the positive-definiteness of the esti-
mated covariance at no additional computational cost. For any ni � ni covariance matrix Σ i, let
define

LiΣ iL
T
i ¼ Di; (2)

where Li is a lower triangular matrix with ones on the diagonal,Di is a diagonal matrix, and the
elements below diagonal in the i-th row of Li can be interpreted as regression coefficients of
the i-th component on its predecessors; the elements of Di give the corresponding prediction
variances. The elements of Di and Li can be modelled using linear models.

The overall model consists of three regression sub-models. These are the models for the lo-
cation of the response vector, the elements of the generalised autoregressive matrices, and the
innovation variances. The JLSMs are based on the MCD or its extensions have been considered
by several authors (for more details, see Pourahmadi, 2013, and references therein) and many
estimation methods have been proposed by Pourahmadi (2000), Fan & Zhang (2000), Wu &
Pourahmadi (2003), Pan & Mackenzie (2003), Fan et al. (2007) and Fan & Wu (2008) to esti-
mate the parameters of JLSMs under the normality assumption. Further, the generalised esti-
mating equations (GEE) method has also been used to estimate the JLSMs parameters (see
Liang & Zeger, 1986, Pan & Ye, 2004, Leng et al., 2010). However, it is well known that these
approaches may be sensitive to outliers due to the normality assumption or using non-robust
GEE. To handle the outlier problem, some robustification has been done in the literature.
One can see Cantoni (2004), He et al. (2005), Wang et al. (2005), Qin & Zhu (2007), Qin
et al. (2009) and (Croux et al., 2012) to see robust approaches to JLSMs. However, their
methods do not deal with irregular observed measurements. When the assumption of normality
is questionable like when unusual points exist or the underlying data exhibit heavy tails, then
other heavy-tailed distributions might be reasonable alternatives. In this context, Lin &
Wang (2009) have proposed a JLSM of t-distribution (t-JLSM), and Guney et al. (2022) have
proposed JLSM of multivariate Laplace distribution. However, in both studies, the variable se-
lection has not been considered.

Numerous possible variables can be added to the model at the initial stage of the model con-
struction to reduce potential biases in the model. This causes the number of variables to be high-
dimensional. In addition, the number of unknown parameters in the covariance model grows
quadratically with the matrix size. The parameter estimation seems computationally intensive
in this case. Therefore, variable selection is as important as parameter estimation in JLSM.
Since all possible subset searches are time-consuming and not practically useful, when the num-
ber of covariates is large, the traditional information-based model selection criteria are not pref-
erable for JLSMs. Another way for variable selection in JLSM is to use penalised likelihood or
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penalised estimating equations. Commonly used penalties include the Bridge penalty intro-
duced by Frank & Friedman (1993), least absolute shrinkage and selection operator (LASSO)
proposed by Tibshirani (1996), hard thresholding penalty defined by Antoniadis (1997), the
smoothly clipped absolute deviation (SCAD) penalty defined by Fan & Li (2001), and adaptive
LASSO (ALASSO) in Zou (2006). For example, Huang et al. (2006) have proposed a maxi-
mum penalised likelihood estimator to select the significant variables and estimate the parame-
ters in JLSM of normal distribution; see also Huang et al. (2007) and Levina et al. (2008) for
some improvements. Kou & Pan (2009) proposed a penalised maximum likelihood method
by penalising the normal likelihood using the SCAD penalty. Xu et al. (2013) have proposed
covariance selection and estimation via penalised normal likelihood using SCAD and estab-
lished the consistency and asymptotic normality of the penalised maximum likelihood estima-
tors of parameters under certain regularity conditions. Jhong et al. (2017) have developed a
novel updating-based method for penalised estimators for the mean vector and the covariance
matrix. Kou & Pan (2020) have used the LASSO, SCAD and hard thresholding penalty to pe-
nalise the likelihood function. The constraint of these studies is that they consider the normal
distribution assumption. In the analysis of longitudinal data, such classical modelling ap-
proaches can be challenged by heavy-tailed errors and outliers, model misspecification, and
others. These challenges demand the development of robust methods that can be insensitive
to model specifications and outliers. Nevertheless, the discussion on robust variable selection
methods has been limited. For example, Zheng et al. (2014) have developed a penalised robust
estimating equations-based method to select important variables. Their method is a robustified
version of the generalised estimation method. In this paper, we proposed a robust variable selec-
tion method in JLSMs using the t-distribution, which can deal with the issue of heavy-tailed
and/or noisy data. We also developed an EM-type algorithm for numerical computations using
the stochastic representation of the multivariate t-distribution.
In this article, following Lin & Wang (2009), we consider the t-JLSM. This paper has two

goals. First, we adapt the EM algorithm to obtain the ML estimates of the parameters using
the scale-mixture representation of the multivariate t-distribution. The second goal of this article
is to develop a penalised likelihood method for t-JLSM to select the important variables that
make a significant contribution to the JLSMs. We consider a penalised likelihood method that
can simultaneously perform parameter estimation and variable selection in the JLSMs. We use
LASSO, SCAD, and Bridge penalties. In addition, we propose an EM-type algorithm to obtain
the penalised likelihood estimates. The asymptotic properties of the resulting estimators are also
considered.
The rest of the article is organised as follows: Section 2 describes the model in detail. A

Fisher scoring algorithm for the implementation of ML estimation is given in this section as
well. Section 3 introduces the EM-type algorithm for computing the ML estimates of the param-
eters. The penalised estimator is proposed, and an EM-type algorithm is devoloped for param-
eter estimation and variable selection in Section 4. Section 4 also provides some theoretical jus-
tifications. In Section 5, we present results from two simulation studies. The first one
investigates how the variable selection method, based on different penalties, concentrates
around the true covariates in location and scale models, while the second one investigates the
advantages that one may have when using the proposed method for modelling the multivariate
longitudinal data with contamination. Section 6 applies the methods to a data set that is the
Framingham Cholesterol data set (qrLMM package in R, (Galarza & Lachos, 2017)) to illus-
trate the proposed method. Finally, Section 7 concludes the paper with a brief discussion.
Theoretical proofs of the theorems that summarise the asymptotic results are presented in
Appendix A.
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2 JLSM OF MULTIVARIATE T-DISTRIBUTION

By assuming responses follow a multivariate t-distribution rather than a normal distribution
in JLSMs, we can conduct data analysis for repeated or clustered measurement data with tails
that extend beyond the normal distribution. The degrees of freedom parameters of the
t-distributed responses provide a convenient way for achieving a flexible trade-off between ro-
bustness and efficiency. Given the aforementioned issues, we consider the t-JLSM for the
heavy-tailed repeated or clustered measurement data.

In this section, we summarise the fundamental results concerning the multivariate t-
distribution, introduce t-JLSM, and derive the ‘complete-data’ likelihood equations, associated
ML estimates, and the Newton–Raphson algorithm to compute the estimates.

2.1 Multivariate t-Distribution

An n -dimensional random vector Y ¼ Y 1; …; Ynð Þ is said to have a multivariate
t-distribution Y ∼ tn μ; Σ; νð Þð Þ with parameters, μ ∈ Rn is the location vector, Σ is the positive
definite scatter matrix and ν ∈ 0; ∞ð Þ degrees of freedom if its density function is as follows:

f y; μ; Σ; νð Þ ¼
Γ

νþ n

2

� �
Σj j�1=2

πνð Þn=2Γ v

2

� � 1þ 1

ν
y � μð ÞTΣ�1 y � μð Þ

� ��ν þ n
2

(3)

where Γð · Þ is the gamma function. The expectation and the variance of Y are EðYÞ ¼ μ and

VarðYÞ ¼ ν
ν � 2

Σ for ν > 2.

As a special case ν ¼ 1, the distribution becomes a multivariate Cauchy distribution, and as
ν→∞, the distribution rolls back to the multivariate normal. Thus, the family of t-distributions
provides a heavy-tailed alternative to the normal family.

The multivariate t-distribution can be defined as a scale mixture ofn� variate normal and the
Chi-square distribution. Let U ∼ Nn 0; Ið Þ and V ∼ χ2ν be independent random variables, then

Y ¼ μþ νΣð Þ1=2U= ffiffiffiffi
V

p
will have tn μ; Σ; νð Þ . The conditional distribution of Y given V is

Nn μ; V�1νΣ
	 


. Then the joint pdf of Y and V will be

f y; vð Þ ¼ Σj j�1=2

πνð Þn=22n þ ν
2 Γ

ν
2

� �vn þ ν
2 � 1exp �v

2
1þ 1

ν
Δ

� � �
; (4)

where Δ ¼ y � μð ÞTΣ�1 y � μð Þ denotes the Mahalanobis squared distance between y and μ
(withΣ as the scatter matrix). Using the joint pdf and the pdf of Y, the conditional density func-

tion of V given Y¼y is Gamma
nþ ν
2

;
2

1þ 1

ν
Δ

0
B@

1
CA. The following conditional expectations can

be easily obtained:

ψ ¼ E V jyð Þ ¼ nþ ν

1þ 1

ν
Δ
; (5)
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E logV jyð Þ ¼ DG
nþ ν
2

� �
þ ln

2

1þ 1

ν
Δ

0
B@

1
CA; (6)

where DGðαÞ ¼ Γ 0 αð Þ
ΓðαÞ . The above results will be useful in the EM-type algorithm to obtain the

ML estimates of the model parameters.

2.2 t-Joint Location and Scatter Matrix Model

Suppose there are m independent subjects and the i-th subject has ni repeated measurements.
Specifically, denote the response vectorYi ¼ Y i1; …; Y inið ÞT for the i-th subject, i ∈ 1; …; mf g,
which are observed at time ti ¼ ti1; …; tinið ÞT . Assume that for each i, the response vector fol-
lows a multivariate t-distribution. Lin & Wang (2009) have defined t-JLSM as follows.

Yi ∼ tni μi; Σ i; νð Þ; (7)

whereμi is the location vector,Σ i ¼ σij
� �

is the ni � ni positive definite scatter matrix and ν is the
degrees of freedom. One classic way of modelling the location of the data is to use a linear
model such as

μi ¼ μi1; …; μini

	 
T ¼ Xiβ; (8)

whereXi ¼ xij
� �

i¼1; …; m;
j¼1;2; …; ni

represents the design matrix of each subject, with size ni � p, and could

have a column of 1’s if an intercept term is desired. Xi is known and assumed to be of full col-

umn rank. β ¼ β1; …; βp
� �T

is a vector of regression coefficients.

To guarantee the positive definiteness of Σ i, we re-parameterise Σ i via the MCD as given
in (2). Here, Li ¼ ljk

� �
is unit lower triangular matrices with 1’s as diagonal entries and

ðj; kÞ-th entry being �ϕjk ; 1 ≤ k ≤ j � 1, and Di ¼ diag σ2j
n oni

j¼1
. The ϕjk’s are called gener-

alised autoregressive parameters and the negatives of the coefficients of Ŷ ij ¼
μij þ ∑

j � 1
k¼1 ϕjk Y ik � μikð Þ. In other words, the ϕjk ’s are the linear least-squares predictor of

Y ij based on its predecessors Y i1; …; Y iðj � 1Þ. The diagonal elements of Di; σ2j ’s, are called

innovation variances of Σ i (the prediction error variances) in the form of σ2j ¼
ν

ν � 2
Var Y ij � Ŷ ij

	 

for 1 ≤ i ≤ m; 1 ≤ j ≤ ni. From these definitions, it is clear that Σ�1

i ¼
LT
i D

�1
i Li.

The unconstrained parameters ϕjk and σ2j can be modelled as follows:

ϕjk ¼ zTjkγ; (9)

log σ2j ¼ wT
j λ: (10)

Here, γ ¼ γ1; …; γdð ÞT and λ ¼ λ1; …; λq
	 
T

are d and q-dimensional vectors of parameters,
zjk and wj are d and q-dimensional covariate vectors (Pan & Mackenzie, 2003). γ and λ are as-
sumed to be common for all Σ i’s for exhibiting the same covariance structure.
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2.3 Maximum Likelihood Estimation of the Parameters

Given a sample Y1; …; Ymf g from model (7), the log-likelihood function will be as follows:

logL μi; Σ ið Þ ¼ ∑
m

i¼1
logΓ

νþ ni
2

� �
� logΓ

ν
2

� �
� ni

2
log πνð Þ

� �
� 1

2
∑
m

i¼1
log Σ ij j

� 1

2
∑
m

i¼1
νþ nið Þlog 1þ 1

ν
Yi � μið ÞTΣ�1

i Yi � μið Þ
� �

(11)

Let ri ¼ Yi � Xiβ ¼ rij
� �ni

j¼1 be the vector of residuals, r̂i ¼ r̂ ij
� �ni

j¼1 ¼ ∑
j � 1
k¼1 rikz

T
jkγ be the

predictor of ri , and n ¼ ∑m
i¼1ni be the total number of observations. Using each of the

sub-models in Equations (8), (9), and (10) and the following result, Liri ¼ ri � r̂i , given in
Pourahmadi (1999), the log-likelihood function has the following representation (Lin &
Wang, 2009).

logL β; γ; λð Þ ¼ ∑
m

i¼1
logΓ

νþ ni
2

� �
� logΓ

ν
2

� �
� ni

2
log πνð Þ

� �
� 1

2
∑
m

i¼1
∑
ni

j¼1
wT

j λ

� 1

2
∑
m

i¼1
νþ nið Þlog 1þ ri � Ziγð ÞTD�1

i ri � Ziγð Þ
ν

 !
(12)

Here, Zi is an ni � d matrix defined by

Zi ¼ zði; 1Þ; z i; 2ð Þ; …; z i; nið Þ½ �T ; zði; jÞ ¼ ∑
j � 1

k¼1
rikz

T
jk : (13)

Taking the derivatives of this log-likelihood function with respect to β; γ; λ, and ν setting
them to zero we obtain the following estimating equations:

β̂ ¼ ∑
m

i¼1
ψ̂ iX

T
i Σ̂

�1
i Xi

� ��1

∑
m

i¼1
ψ̂ iX

T
i Σ̂

�1
i Yi

� �
; (14)

γ̂ ¼ ∑
m

i¼1
ψ̂ iẐ

T
i D̂

�1
i Ẑi

� ��1

∑
m

i¼1
ψ̂ iẐ

T
i D̂

�1
i ~ri

� �
; (15)

λ̂ ¼ ∑
m

i¼1
ψ̂ i ∑

ni

j¼1
wjw

T
j

� ��1

∑
m

i¼1
∑
ni

j¼1
ψ̂ iwjD̂

�1
i ϵ̂ 2i � Ω̂2

i � D̂i log Ω̂2
i

	 
� �
; (16)

and

ν̂ ¼ 1

n
∑
m

i¼1
DG

ν̂ þ ni
2

� �
� DG

ν̂
2

� �� �
� ∑

m

i¼1
log 1þ 1

ν̂
Δ̂i

� �
þ 1

ν̂2
∑
m

i¼1
ψ̂ iΔ̂i

� � ��1

; (17)

where ψ̂ i ¼
ν̂ þ ni

1þ 1

ν̂
Δ̂i β̂; γ̂; λ̂
	 
; Δ̂i β; γ; λð Þ ¼ Yi � μ̂ið ÞT Σ̂�1

i Yi � μ̂ið Þ; ~ri ¼ Yi � μ̂i; ϵ̂
2
i ¼

~ri1 � r̂ i1ð Þ2; …; ~rini � r̂ inið Þ2
� �

, and Ω̂2
i ¼ σ̂2

i1; σ̂
2
i2; …; σ̂2

ini

� �T
. Note that the estimating

equations for β and γ are given before in literature (see Lin & Wang, 2009).
Here, ψi can be seen as a weight function, which is a decreasing function of Δi. Using this

weight function, data points with large residuals receive small weights and hence will be
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down-weighted. In this study, we consider the degrees of freedom ν is known and set to some
small values for the sake of robustness (see Lange et al., 1989; Arslan & Genç, 2003; Arslan
& Genc, 2009).
The ML estimates of the parameters can be obtained by maximising the log-likelihood func-

tion given in the Equation (11). One way to get the estimates is to use the Newton–Raphson or
Fisher scoring algorithms as in (Lin & Wang, 2009). The estimates can be obtained using the
following Newton–Raphson updating equations.

θ̂ ¼ ~θ � H�1 ~θ
	 


U ~θ
	 


: (18)

Here, H is Hessian matrix and U is the score vector. By replacing the Hessian matrix in
Equation (18) with the expected Fisher information matrix FðθÞ ¼ �EðHðθÞÞ, which can be
found in (Lin & Wang, 2009), the ML estimates of the parameters can also be obtained via
the iterative Fisher scoring method:

θ̂ ¼ ~θ þ F�1 ~θ
	 


U ~θ
	 


: (19)

The steps of Fisher scoring algorithm are as follows.

Step 1. Let θð0Þ ¼ βð0Þ; γð0Þ; λð0Þ
	 


is be the initial parameter vector and form theLð0Þ
i andDð0Þ

i

matrices using the models given in (9)–(10) and Σð0Þ
i .

Step 2. For h ¼ 0; 1; :::, using θðhÞ ¼ βðhÞ; γðhÞ; λðhÞ
	 


compute the value γðh þ 1Þ using the

Equation (15). To calculate λðh þ 1Þ either use the updating Equation (16) or the following Fisher
scoring equation.

λðh þ 1Þ ¼ λðhÞ þ FðhÞ
λλ

� ��1
UðhÞ

λ (20)

Step 3. Compute the inverse of Σðh þ 1Þ
i

Σðh þ 1Þ
i

� ��1
¼ LT

i γðh þ 1Þ
� �

D�1
i λðh þ 1Þ
� �

LT
i γðh þ 1Þ
� �

Step 4. Use βðhÞ and Σðh þ 1Þ
i update ψðh þ 1Þ

i , calculate βðh þ 1Þ using the Equation (14).
Step 5. Repeat Steps 2 to 4 until a pre-specified criterion is met.
Remark: Concerning the estimation of the degrees of freedom ν, one can use the updating

equation given in (17) before Step 5.
Note that these algorithms require a Hessian matrix, which increases the computational costs

of each iteration. On the other hand, given the scale mixture representation of the t-distribution,
the EM algorithm emerges as a prominent inference tool, renowned for its numerical stability
and straightforward implementation, enabling the computation of parameter estimates. Compar-
ing the EM algorithm with previous algorithms by only looking at the number of iterations,
those algorithms are faster. Yet as we have already pointed out the computational costs of each
iteration for those algorithms are higher compared to the EM algorithm due to the calculation of
the Hessian matrix (Jørgensen & Petersen, 2012). Further, it is shown that the log-likelihood
function including the penalty term used in the EM algorithm is monotone increasing that will
lead to at least a local maximum.

7

International Statistical Review (2024)
© 2024 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12577 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [11/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 EM-TYPE ALGORITHM TO COMPUTE THE ML ESTIMATES

LetYi and V i be observed and missing data, respectively and for i ¼ 1; 2; …; m, Yi; V ið Þ, be
the complete data. LetYi ∼ tni μi; Σ i; νð Þ andYi¼μi þ νΣ ið Þ1=2Ui=

ffiffiffiffiffi
V i

p
. Using the joint density

function of Yi; V ið Þ given in (4), we can get the following complete data log-likelihood function.

logL β; γ; λð Þ ¼ �1

2
∑
m

i¼1
log Σ ij j � 1

2
∑
m

i¼1
V i 1þ 1

ν
Δi

� �
: (21)

E-step: Let θ ¼ β; γ; λð Þ . Finding the conditional expectation of the complete data
log-likelihood function yields the following objective function:

Q θjθðhÞ
� �

¼ E logL μi; Σ ijyið Þ½ � ¼ �1

2
∑
m

i¼1
log Σ ij j � 1

2
∑
m

i¼1
ψiΔi; (22)

where ψi given in Equation (5).
M-step: In the M-step, maximise Q with respect to θ to find a new estimate θðh þ 1Þ.

These two steps can be implemented with the following iteratively re-weighting algorithm
(IRA).

Algorithm Steps:
Step 1. Take the initial estimates θð0Þ and determine a stopping rule ϵ.
Step 2. (E Step) Set h ¼ 0; 1; 2; :::. Compute riðhÞ ¼ Yi � XβðhÞ; σ2ðhÞj ; ϕðhÞ

jk using Equations (9)

and (10), respectively. Also compute r̂ðhÞij ¼ ∑
j � 1
k¼1 r

ðhÞ
ik ϕðhÞ

jk and ZðhÞ
i using Equation (13). Form the

following matrices DðhÞ
i ¼ diag σ2ðhÞj

n oni

j¼1
and LðhÞ

i ¼ lðhÞjk

h i
withðj; kÞ � thentrybeing � ϕðhÞ

jk ; 1 ≤ k ≤ j � 1

and then compute Σ�1ðhÞ
i ¼ LðhÞ

i
TDðhÞ

i �1LðhÞ
i and ΔðhÞ

i ¼ yi � XβðhÞ
	 
T

Σ�1ðhÞ
i yi � XβðhÞ

	 

.

Then compute the current value of conditional expectation ψðhÞ
i given in Equation (5).

Step 3. (E Step) Form the following objective function using the current estimates:

Q θ; θðhÞ
� �

¼ �1

2
∑
m

i¼1
log Σ ij j � 1

2
∑
m

i¼1
ψðhÞ
i Δi: (23)

Step 4. (M Step) Maximise the Q θ; θðhÞ
	 


with respect to θ to get the ðhþ 1Þ-th parameter
estimates for the parameters. This maximisation yields the following updating equation for γ

γðh þ 1Þ ¼ ∑
m

i¼1
ψðhÞ
i ZðhÞ

i T DðhÞ
i

� ��1
ZðhÞ
i

� ��1

∑
m

i¼1
ψðhÞ
i ZðhÞ

i T DðhÞ
i

� ��1
~rðhÞi

� �
: (24)

Calculate λðh þ 1Þ using either the updating Equation (16) or the Fisher scoring Equation (20).
Using βðhÞ; γðh þ 1Þ; λðh þ 1Þ , update Σðh þ 1Þ

i and ψðh þ 1Þ
i . Then calculate βðh þ 1Þ by using the

updating Equation (14).
Step 5. Repeat E and M steps until the convergence rule θðh þ 1Þ � θðhÞ < ϵ is satisfied.
Remark. Note that the estimates of the degrees of freedom ν can be also calculated using

Equation (17); however, in our study, we will not do so for the sake of robustness as we have
already pointed out in Section 2.3.

4 VARIABLE SELECTION VIA PENALISED LIKELIHOOD METHOD

Since the JLSM includes three sub-models for each parameter, using more variables than re-
quired can be harmful to detecting suitable modelling. At this point, variable selection is as
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important as parameter estimation in this model. The classical methods considered in the liter-
ature are based on the normality assumption, which is unrealistic. Parameter estimation and in-
ference can fail in the presence of outliers. For this reason, we consider the penalised likelihood
approach for t-JLSM. The penalised likelihood estimator of the unknown parameter vector

θ¼ θ1; …; θsð Þ ¼ βT ; γT ; λT
	 
T

with s ¼ pþ d þ q is defined as

θ̂ ¼ arg max
θ

S θð Þ; (25)

where the objective function is

S θð Þ ¼ logL θð Þ � m ∑
s

k¼1
pτm θkj jð Þ: (26)

Here, logL θð Þ is the log-likelihood function given in Equation (11) andpτm θkj jð Þ is the penalty
term with the tuning parameter τm. Note that different penalty functions can be used for the pa-
rameter vectors of each sub-models but we prefer using the same penalty function for all the
regression coefficients. With appropriate penalty functions, maximising S θð Þ with respect to
θ leads to certain parameter estimators vanishing from the initial models so that the unnecessary
explanatory variables are automatically removed.
The idea behind the family of variable selection methods based on shrinkage methods is to

add a penalty function to the negative log-likelihood and then minimise it (or maximise its neg-
ative). Such penalties have the property that small components of the parameter vector are
completely minimised to zero. These methods differ from traditional subset selection ap-
proaches in that they delete unimportant variables if their coefficients are estimated to be zero
under the chosen tuning parameters. Thus, selecting significant variables and estimating coeffi-
cients are carried out simultaneously. There is a variety of shrinkage methods available, which
include but are not limited to the Bridge (Frank & Friedman, 1993), the LASSO
(Tibshirani, 1996), and the SCAD (Fan & Li, 2001). Frank and Friedman (1993) suggested
using the Lq penalty pτðjtjÞ ¼ τjtjq, which leads to Bridge method. A special case of the Bridge
penalty is the LASSO (q ¼ 1) proposed by Tibshirani (1996). Fan and Li (2001) suggested
using the SCAD penalty function, which is defined by

pτ tj jð Þ ¼
τ tj j if 0 ≤ tj j < τ

� tj j2 � 2ατ tj j þ τ2
� �

= 2 α � 1ð Þf g if τ ≤ tj j < ατ

αþ 1ð Þτ2=2 if tj j ≥ ατ

8>><
>>: (27)

where α > 2 and τ > 0 are tuning parameters. Note that the SCAD penalty function is sym-
metric, non-convex on 0; ∞½ Þ, and singular at the origin. In practice, one could search the best
pair τ; αð Þ over the two-dimensional grids using some criteria, such as cross-validation (CV),
generalised cross validation (GCV), Akaike information criteria (AIC), and Bayesian informa-
tion criteria (BIC). In the simulation study and the real data example, we consider LASSO,
SCAD and Bridge penalties. Fan and Li (2001) pointed out that choosingα ¼ 3:7works reason-
ably well for SCAD penalty, so we follow their suggestion and use BIC to choose the other
tuning parameters.

4.1 EM-type Algorithm for Parameter Estimation and Variable Selection

The penalised likelihood functions become non-differentiable at the origin and non-concave
with respect to the parameters. These make it difficult to maximise the penalised likelihood

9
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functions. Therefore, Fan & Li (2001) proposed the following local quadratic approximation

(LQA) to approximate the penalty function at an initial value θð0Þ¼ θð0Þ1 ; …; θð0Þs

� �
that is close

to the true value of θ:Using this approximation, the maximisation problem given in (26) can be
rewritten as

θ̂ ¼ arg max S∗ θð Þ (28)

with the objective function

S∗ θð Þ ¼ logL θð Þ � m

2
θTW θð0Þ

� �
θ (29)

whereW θð0Þ
	 
 ¼ diag

p0τm θð0Þk

��� ���� �
θð0Þk

��� ���
8<
:

9=
;

s

k¼1

. Steps 1 and 2 will be the same as given in Section 3.

Step 1. (E Step) Reform the objective function given in (23)

Q∗ θ; θðhÞ
� �

¼ �1

2
∑
m

i¼1
log Σ ij j � 1

2
∑
m

i¼1
ψðhÞ
i Δi � m

2
θTW θð Þθ: (30)

Step 2. (M Step)Maximise theQ∗ θ; θðhÞ
	 


with respect to θ to get the ðhþ 1Þ-th estimates for
the parameters, which yields the following updating equation for γ and λ:

γðh þ 1Þ ¼ ∑
m

i¼1
ψðhÞ
i ZðhÞ

i T DðhÞ
i

� ��1
ZðhÞ
i þ τmWðhÞ

γ

� ��1

∑
m

i¼1
ψðhÞ
i ZðhÞ

i T DðhÞ
i

� ��1
~rðhÞi

� �
; (31)

λðh þ 1Þ ¼ ∑
m

i¼1
ψðhÞ
i ∑

ni

j¼1
wjw

T
j þ 2τmW

ðhÞ
λ

� ��1

∑
m

i¼1
∑
ni

j¼1
ψðhÞ
i wjD̂

�1
i ϵ2ðhÞi � Ω2

i ðhÞ � DðhÞ
i logΩ2

i ðhÞ
� �� �

;

(32)

where ~rðhÞi ¼ Yi � μðhÞ
i , ϵ2ðhÞi ¼ ~rðhÞi1 � rðhÞi1

� �2
; …; ~rðhÞini � rðhÞini

� �2� �
and Ω2

i ðhÞ ¼

σ2ðhÞi1 ; …; σ2ðhÞini

� �T
.

The second way to compute γ is to use the scoring procedure given in (20).

Using βðhÞ; γðh þ 1Þ; λðh þ 1Þ, update Σðh þ 1Þ
i and ψðh þ 1Þ

i . Then calculate βðh þ 1Þ by using

βðh þ 1Þ ¼ ∑
m

i¼1
ψðhÞ
i XT

i ΣðhÞ
i

� ��1
Xi þ τmW

ðhÞ
β

� ��1

∑
m

i¼1
ψðhÞ
i XT

i ΣðhÞ
i

� ��1
Yi

� �
; (33)

where WðhÞ
β ¼ W βð0Þ

	 

; WðhÞ

γ ¼ W γð0Þ
	 


, and WðhÞ
λ ¼ W λð0Þ

	 

.

Step 3. Repeat E and M steps until the convergence rule θðh þ 1Þ � θðhÞ < ϵ is satisfied.
Choosing the tuning parameters
In variable selection, choosing the tuning parameter is a crucial problem. In literature, there

are many methods such as CV and GCV (Fan & Li, 2001; Tibshirani, 1996) to choose the
tuning parameters. In our study, we determine the optimal value of tuning parameter by
minimising BIC with the following formula as suggested by Wang et al. (2007):

BICðτÞ ¼ � 2

m
logL θ̂

	 
þ df τ
logðmÞ

m
(34)
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where θ̂ is the estimate of θ; df τ 0 < df τ < pþ d þ qð Þ denotes the number of non-zero
components of θ̂, and logL θ̂

	 

is defined in Equation (11).

4.2 Theoretical Results

In this subsection, we provide some theoretical justifications. We first prove that the penalised
log-likelihood function is increasing in each iteration using the EM-type algorithm. The consis-
tency, sparsity and asymptotic normality of the penalised estimator θ̂ will be established in our
context. We only state the main results here and relegate the proofs to Appendix A.

Theorem 1. Let pτmð · Þ is a differentiable concave penalty function on 0; ∞½ Þ, then the penalised

log-likelihood function is increasing at each iteration of the EM algorithm.

Let θ0 be the true parameter vector. Partitation θ0 as θð1Þ0

� �T
; θð2Þ0

� �T� �T

where θð1Þ0 with the

dimension s1 is the vector of all non-zero components andθð2Þ0 with the dimension s2 is the vector

of all zero components. Let am ¼ max
1 ≤ j ≤ s

p0τm θ0j
�� ��	 


:θ0j ≠ 0
n o

and bm ¼
max

1 ≤ j ≤ s
p00τm θ0j

�� ��	 

:θ0j ≠ 0

n o
. The p0τm θð Þ and p00τm θð Þ are the first and second derivatives of

the function pτm θð Þ with respect to θ. We have the following conditions on the penalty function
C1 For allm and τm, pτmð0Þ ¼ 0, and pτm θð Þ is symmetric, non-negative, non-decreasing and twice

differentiable for all θ in ð0; ∞Þ with at most a few exceptions.
C2 As m→∞; bm ¼ oð1Þ.
C3 For Tm ¼ θ; 0 < θ ≤ m�1=2logm

� �
; limm→∞inf θ ∈ Tmp

0
τm θð Þ= ffiffiffiffi

m
p ¼ ∞.

These conditions guarantee
ffiffiffiffi
m

p
-consistency of the estimators. The following assumptions are

also needed:
A1

Yi ∼ tni μi; Σ i; νð Þ, for each i.

A2 The covariates xij; zjk, andwj i ¼ 1; 2; …; m; j ¼ 1; 2; …; ni; k ¼ 1; 2; …; j � 1ð Þ are fixed
and finite. The number of repeated measurements nið Þ are fixed.

A3 The parameter space is compact and the θ0 is in the interior of the parameter space.

The following theorems states the consistency, sparsity and asymptotic normality of θ̂
Theorem 2. Assume that am ¼ Op m�1=2

	 

; bm→0, and τm→0 as m→∞. Under the conditions

(A1)-(A3), with probability tending to 1 there must exist a local maximiser θ̂m of the penalised like-

lihood function S∗ θð Þ in (29) such that θ̂m � θ0 ¼ Op m�1=2
� �

.

Let Am ¼ diag p00τm θð1Þ01

��� ���� �
; ; …; p00τm θð1Þ0s1

��� ���� �� �
; cm ¼ p0τm θð1Þ01

��� ���� �
sgn θð1Þ01

� �
; …; p0τm θð1Þ0s1

��� ���� �
sgn θð1Þ0s1

� �� �T
; θð1Þ0j

is the j-th component of θð1Þ0 , and Fm θð Þ represents the Fisher information matrix of θ:
Theorem 3. Assume that the conditions in Theorem 1 are satisfied, and the function pτm θð Þ sat-

isfies conditions C1–C3. If the penalty function has lim infm→∞lim inf t→0þ
p0τmðtÞ
τm

> 0 when τm→0

and
ffiffiffiffi
m

p
τm→∞ as m→∞, then for any

ffiffiffiffi
m

p
-consistent estimator θ̂m of θ, as m→∞, we have

(i) Consistency in the variable selection: P θ̂ð2Þ
m ¼ 0

� �
→1, (ii) Asymptotic normality:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m Fð1Þ

m

	 
q
Fð1Þ
m þ Am

� �
θ̂ð1Þ
m � θð1Þ0

� �
þ Fð1Þ

m þ Am

� ��1
cm

 �
→
D
→
Ns1 0; I s1ð Þ;

where “
→

D
→
” stands for the convergence in distribution;Fð1Þ is the s1 � s1ð Þ submatrix of n correspond-

ing to the non-zero components θð1Þ0 and I s1 is the s1 � s1ð Þ identity matrix.

5 SIMULATION STUDY

In this section, a simulation study is performed to compare the performance of the proposed
methods in terms of estimation and variable selection over the ML estimation method. All sim-
ulations are conducted using R [?]. We use the same design as in the study of (Xu et al., 2013).
The true values of the parameters in the mean, generalised autoregressive parameters, and
log-innovation variances are β¼ 1; �0:5; 0; 0:5; 0; 0; 0½ �T ; γ¼ �0:3; 0:3; 0; 0; 0½ �T and
λ¼½0; 0:5; 0:4; 0; 0�T , respectively. In the models, xij ¼ 1; xijt

	 

are generated from a 7-variate

multivariate normal distribution with mean zero, marginal variance 1, and all correlations 0.5.
We then form the covariates wij ¼ xijt

	 
5
t¼1 and zijk ¼ 1; tij � tik ; ðtij � tikÞ2; …; ðtij � tikÞ4

� �
for the

log-innovation variances and the generalised autoregressive parameters with the measurement
times tij , which are generated from the uniform distribution Uð0; 2Þ. Note that zði; 1Þ ¼ 0 so
that the first row of Zi is zero. Using these values, the mean μi and covariance matrix Σ i are
constructed through the MCD. The initial values of parameters for EM are gathered from ordi-
nary least squares as given in (Pan & Pan, 2017).

We carry on the theoretical part of the paper for assuming different ni for each subject, but we
only consider the balanced models (ni ¼ n) in simulation and in our real data for the ease of
computation. We simulate 100 data sets for each setting with sample sizes m=100, 200 and
400. We simulate m subjects, each has n ¼ 12 observations drawn from the t12 μi; Σ i; νð Þ. In
the simulation study, the degrees of freedom ν of the t-distribution are fixed and set to 3, as rec-
ommended for the sake of robustness in the literature (see Lange et al., 1989; Arslan &
Genç, 2003; Arslan & Genc, 2009). For SCAD, the tuning parameter α is taken as 3.7 as sug-
gested by Fan & Li (2001), and the parameter τm is selected by BIC. Figure 1 represents the dis-
tribution of y-values without contamination for one of our generated data sets. The fluctuations
between and within observations repetitions encourage us to use a model including these
variations.

The variable selection performance is assessed by the proportion of times that the correct
model is selected (CF). We compared model errors of different estimators by the square root

of the median of model error RMME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Median θ̂M � θ0

	 
T
θ̂M � θ0
	 
n or

. Here, θ̂M is

the estimate of the parameter vector obtained fromM-th simulated data set of 100 data sets. Ta-
ble 1 presents the simulation results with the CF and RMME.

Figure 2 depicts the estimates of non-zero β and one of the zero βs with MLE and shrinkage
methods for each simulation. It is observed that MLE (green dots) are further away from the ac-
tual values (horizontal blue line), which indicates the biases, compared to the shrinkage
methods. Figure 3 and Figure 4 show the estimation of all γ and λ values for MLE and shrinkage
methods, respectively. We can again notice that the MLE (green dots) are further away from the
actual values (horizontal blue line) compared to the shrinkage methods.

12 GÜNEY ET AL.

International Statistical Review (2024)
© 2024 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12577 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [11/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



We also aimed to investigate how the simulation results varied when estimating parameters
using a normal distribution approach suggested by Kou & Pan (2009). To achieve this, we em-
ployed ν ¼ 50 to ensure that the estimation was conducted using a normal distribution rather
than a t-distribution with the same simulated data. The findings are presented in Table 2 below.
The analysis reveals that the simulation results obtained from the normal distribution do not

outperform those obtained from the t-distribution, as documented in Table 1.
We would further like to explore the robustness of the proposed methods against to the dif-

ferent outlier scenarios. The contamination scenarios are designed as follows:
Scenario 1: 100 added to target Mean values of randomly chosen 10% of yi,
Scenario 2: 100 added to target Sigma values of randomly chosen 10% of yi,
Scenario 3: Randomly chosen 10% of the μi values are generated from different Betas re-

ported below: βnew¼½1; 0; 100; 100; 0; 0; 0�T .
Scenario 4: 100 added to target mean values of randomly chosen 10% of X .
Figure 5 shows how data changes with each scenario. It can be observed from these graphs

that Scenario 1 and 2 deviate significantly from the original data, while 3 and 4 do not cause
significant contamination.

FIGURE 1. An example of response values without perturbation.

Table 1. Simulation results without contamination.

LASSO SCAD Bridge

n CF RMME CF RMME CF RMME

β 100 96 0.0299 95 0.0315 96 0.0276
200 100 0.0207 99 0.0180 99 0.0199
400 100 0.0145 100 0.0134 100 0.0134

γ 100 100 0.0235 100 0.0252 100 0.0235
200 100 0.0166 100 0.0172 100 0.0168
400 100 0.0109 100 0.0117 100 0.0106

λ 100 84 0.1186 84 0.1205 84 0.1187
200 99 0.0854 99 0.0857 99 0.0854
400 100 0.0526 100 0.0521 100 0.0532
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The CF and RMME are reported in Tables 3 and 4 for contamination Scenario 1, 2, 3 and 4.
When considering contamination scenarios, it is observed that the first two scenarios induce

greater distortion to the data than its normal appearance. In contamination scenarios 1 and 2,
although the accuracy of estimating the β parameter does not change significantly compared
to the original simulations reported in Table 1, there is a decrease in the estimation of γ and λ
for small sample sizes. In scenarios 3 and 4, as expected, there is no significant change in the
estimation. It is crucial to comprehend the modifications in the parameter estimates obtained
from the MLEs and shrinkage methods in response to these scenarios. Figures 6 and 7 illustrate
the differences in the β estimations between MLE and shrinkage methods for Scenario 1 and 2,
respectively. The same plots for Scenario 3 and 4 was not added to save some space, since they
are similar to the plots of the data without contamination. The results demonstrate that the
MLEs deviate from the true values of β when the data are contaminated, while the shrinkage
methods still provide reliable estimates.

6 REAL DATA ANALYSIS

In this section, we apply the proposed method with LASSO, SCAD and Bridge to Framing-
ham Cholesterol data set (qrLMM package in R, Galarza and Lachos, 2017) that was used to
analyse the progression of cardiovascular disease and the role of serum cholesterol as a risk fac-
tor in 200 randomly selected individuals over a period of time. The data set includes the follow-
ing variables: ID is the subject number in the population, cholst is the cholesterol level for each
patient that was measured at the beginning of the study and at 2-year intervals for 10 years, year

FIGURE 2. β estimations (m ¼ 100).
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represents the number of years that have passed since the beginning of the study up to the time
of the current measurement, age at baseline and sex. We included the complete measurements
collected over ten years for individuals who remained in the study for the entire duration. In the
study of Zhang & Davidian (2001), they also used Cholesterol Data for their proposed method
which relaxed the normality assumption for random effects by introducing a
semi-nonparametric representation of Gallant & Nychka (1987) in linear mixed models. For
these data (Figure 8), we used robust modelling and combined the variable selection with it
to carry on robust estimation and variable selection, simultaneously.
To investigate these data preliminarily, we utilised a linear regression model over the years

for each individual, and the intercept and slope with their corresponding confidence intervals
are shown in Figure 9. Differences in the estimates for intercept and slope in the plot suggest
the need to use a model such as mean-covariance that incorporates differences between each
of the observations, as opposed to the traditional regression model approach. Furthermore, Fig-
ure 9 reveals a grouping by gender, particularly in the intercept graphic on the left. In this case,
it will be necessary to add a gender variable and gender-year interaction to the model in addition
to the age covariate with all interactions.
When examining the values of standardised residuals in Figure 10, it was observed that there

are outliers in both gender groups in the available data, and when Figure 11 is examined, it can-
not be concluded that the normality assumption is valid. Therefore, a model that takes into

FIGURE 3. γ estimations (n ¼ 100).
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account both within-group and between-group variability while also incorporating outlier
values and a heavy-tailed data structure would be appropriate for these data. For this reason,
we think that t-JLSM can be used to model this data set. In particular we assume that the cho-
lesterol level Yi has a tn μi; Σi; νð Þ with the following sub-models for i ¼ 1; …; 174 and j ¼
1; …; 6:

FIGURE 4. λ estimations (n ¼ 100).

Table 2. Simulation results obtained from ν ¼ 50 without contamination.

LASSO SCAD Bridge

n CF RMME CF RMME CF RMME

β 100 90 0.0326 92 0.0284 85 0.0292
200 81 0.0279 92 0.0202 88 0.0214
400 70 0.0373 93 0.0145 91 0.0161

γ 100 93 0.0253 96 0.0234 87 0.0265
200 78 0.0242 92 0.0177 90 0.0176
400 66 0.0284 93 0.0145 89 0.0142

λ 100 87 0.1165 86 0.1088 81 0.1148
200 74 0.0863 91 0.0740 88 0.0740
400 58 0.0943 92 0.0498 89 0.0504
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μij ¼ β0 þ β1Genderi þ β2Agei þ β3tij þ β4t
2
ij

þβ5Genderi � Agei þ β6Agei � tij þ Genderi � tij
(35)

Here, zjk in ϕjk are generated as in the simulation study, and wj in innovation variance are
taken as wj ¼ ½1 j j2 :::j4�. Similar to in the simulation case, we are taken the degrees of freedom
ν as 3 (see Lange et al., 1989; Arslan & Genç, 2003; Arslan & Genc, 2009).
Three main parameters βs, γs and λs are under consideration. It is not anticipated for this data

set to have a quadratic relationship with respect to year; however, the inclusion of the

FIGURE 5. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.

Table 3. Simulation results for Scenario I and II.

Scenario 1 Scenario 2

LASSO SCAD Bridge LASSO SCAD Bridge

n CF RMME CF RMME CF RMME CF RMME CF RMME CF RMME

β 100 92 0.0326 89 0.0327 88 0.0312 95 0.0331 90 0.0366 90 0.0317
200 97 0.0254 97 0.0240 97 0.0256 99 0.0250 97 0.0232 98 0.0251
400 100 0.0201 100 0.0167 100 0.0196 100 0.0194 100 0.0165 100 0.0189

γ 100 93 0.1034 94 0.0994 96 0.1014 94 0.0943 68 0.1584 96 0.0918
200 89 0.1396 91 0.1395 80 0.1401 93 0.1271 93 0.1222 93 0.1236
400 93 0.0754 94 0.0720 98 0.0726 95 0.0698 95 0.0661 98 0.0660

λ 100 68 0.1558 70 0.1528 68 0.1531 69 0.1524 65 0.1459 69 0.1515
200 69 0.1708 71 0.1666 63 0.1858 75 0.1574 75 0.1582 75 0.1577
400 100 0.1339 100 0.1330 100 0.1345 100 0.1285 100 0.1277 100 0.1284
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corresponding quadratic term and β4 parameter was deemed necessary to assess the ability of
our proposed method in selecting this variable as insignificant. The estimation of parameters
and the selection of variables for Cholesterol data were executed using the EM steps as outlined
in Section 4.1. Additionally, the mean prediction errors (MPE) are calculated by applying CV,

Table 4. Simulation results for Scenario III and IV.

Scenario 3 Scenario 4

LASSO SCAD Bridge LASSO SCAD Bridge

n CF RMME CF RMME CF RMME CF RMME CF RMME CF RMME

β 100 97 0.0315 93 0.0328 93 0.0321 100 0.1119 98 0.1059 98 0.0447
200 100 0.0225 100 0.0214 100 0.0201 100 0.0786 100 0.0731 100 0.0253
400 100 0.0173 100 0.0146 100 0.0162 100 0.0591 100 0.0598 100 0.0105

γ 100 100 0.0300 100 0.0299 100 0.0299 100 0.0426 100 0.0430 100 0.0268
200 100 0.0549 100 0.0497 100 0.0521 100 0.0388 100 0.0398 100 0.0152
400 100 0.0320 100 0.0251 100 0.0277 100 0.0347 100 0.0336 100 0.0084

λ 100 83 0.1367 89 0.1230 89 0.1235 87 0.1197 86 0.1178 85 0.1121
200 96 0.1088 96 0.1077 96 0.1081 98 0.0825 98 0.0838 99 0.0811
400 100 0.0961 100 0.0945 100 0.0957 100 0.0579 100 0.0586 100 0.0547

FIGURE 6. β estimations scenario 1 (n ¼ 100).
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80% of the data being the training data with 10 repeats. The formula of MPE for each CV set is
given below

MPE ¼ 1

ntest
∑
ntest

i¼1
ðyi � μ̂iÞT Σ̂�1

i ðyi � μ̂iÞ: (36)

The real data results are summarised in Table 5. According to the real data results, the last
value of the λ is determined as zero from all three shrinkage methods. The model for the inno-
vation variance is chosen as third-order polynomial model. While we thought it would be a
fourth-order polynomial model, it came up as a cubic polynomial in time. β4 is determined as
zero that indicates the quadratic term for year is not necessary in the model. SCAD and Bridge
methods agree on variable selection, while LASSO forces the quadratic form of the year to be
included in the model with a small contribution for this data set. Similar to the simulation re-
sults, SCAD also provided the best result followed by Bridge for the real data set in the smallest
BIC and MPE.

FIGURE 7. β estimations scenario 2 (n ¼ 100).
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FIGURE 8. Cholesterol levels over time for each subject in Framingham Cholesterol data set.

FIGURE 9. Parameter estimations of each subject for intercept on the left and slope on the right with their confidence
intervals.
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7 DISCUSSION

The main contribution of this paper can be summarised as follows. Using the scale mixture
representation of the t-distribution, we have proposed an EM-type algorithm to compute the es-
timates. The simultaneous variable selection and robust parameter estimation have been com-
bined with the EM algorithm for the t-JLSMs. In this EM-type algorithm, the M-step has been

FIGURE 10. Standardised residuals for each subject by gender groups.

FIGURE 11. Residuals of LM for each subject.
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implemented via weighted least squares, with weights computed at the E-step as the expectation
of independent Gamma variables. The variable selection has been carried on using the penalised
likelihood method based on LASSO, SCAD, and Bridge penalties to choose important variables
in t-JLSMs. We have further explored the asymptotic properties of the proposed estimators and
shown the consistency, sparsity and the asymptotic normality of the estimator for the parameters
of t-JLSMs.

The simulation results and real data have yielded results in favour of our proposed method.
While simulations have shown accurate results to select for all non-zero parameters, a decrease
in the accuracy of selecting γ and λ parameters has been observed as the data becomes contam-
inated. However, this degradation disappears as the data size increases. Overall, SCAD provides
more accurate results followed by Bridge in variable selection for these types of models for re-
peated data.
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APPENDIX A:

In this section, we provide some theoretical justifications. We first prove that the penalised
log-likelihood function is increasing in each iteration using the EM-type algorithm. The consis-
tency, sparsity and asymptotic normality of the penalised estimator θ̂ will be established in our
context.

Theorem 1 Let pτmð · Þ is a differentiable concave penalty function on 0; ∞½ Þ , then the
penalised log-likelihood function is increasing at each iteration of the EM algorithm.

Proof of Theorem The proof of Theorem 1 is very similar to the proof given by Arslan (2004).
Here, we will outline the proof.

Let consider S θð Þ and define

Φ θ; θ̂
	 
 ¼ � ∑

m

i¼1
log Σ ij j � ∑

m

i¼1
ψ̂ iΔi � ∑

s

k¼1
pτm θ̂k

�� ��� �
þ p0τm θ̂k

�� ��� �
θk � θ̂k
� �

: (A1)

Then using estimate θðhÞ at the ðhþ 1Þ-th step of the algorithm, we have

θðh þ 1Þ ¼ argmax

θ ∈ Sp
Φ θ; θðhÞ
� �

: (A2)

Here, we need to prove that

S θðh þ 1Þ
� �

≥ S θðhÞ
� �

: (A3)

Let consider at the h-th step

S θð Þ � Φ θ; θðhÞ
� �

¼ ∑
s

k¼1
pτm θðhÞk

��� ���� �
þ p0τm θðhÞk

��� ���� �
θk � θðhÞk

� �
� pτm jθk jð Þ: (A4)
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Since pτmð · Þ is concave, then S θð Þ ≥ Φ θ; θðhÞ
	 


. By considering the h-th step in this result, we

have S θðhÞ	 

≥ Φ θðhÞ; θðhÞ	 


. Then we have

S θðh þ 1Þ
� �

≥ Φ θðh þ 1Þ; θðhÞ
� �

≥ Φ θðhÞ; θðhÞ
� �

¼ S θðhÞ
� �

: (A5)

Thus, we have proved the monotonicity of our proposed EM-type algorithm.

Let θ0 be the true parameter vector. Partition θ0 as θð1Þ0

� �T
; θð2Þ0

� �T� �T

where θð1Þ0 with the di-

mension s1 is the vector of all non-zero components and θð2Þ0 with the dimension s2 is the vector of

all zero components. Let am ¼ max
1 ≤ j ≤ s

p0τm θ0j
�� ��	 


:θ0j ≠ 0
n o

and bm ¼
max

1 ≤ j ≤ s
p00τm θ0j

�� ��	 

:θ0j ≠ 0

n o
. The p0τm θð Þ and p00τm θð Þ are the first and second derivatives of the

function pτm θð Þ with respect to θ. We have the following conditions on the penalty function:

C1 For allm and τm, pτmð0Þ ¼ 0, and pτm θð Þ is symmetric, non-negative, non-decreasing and twice
differentiable for all θ in ð0; ∞Þ with at most a few exceptions.

C2 As m→∞; bm ¼ oð1Þ.
C3 For Tm ¼ θ; 0 < θ ≤ m�1=2logm

� �
; limm→∞inf θ ∈ Tmp

0
τm θð Þ= ffiffiffiffi

m
p ¼ ∞.

These conditions guarantee
ffiffiffiffi
m

p
-consistency of the estimators. The following assumptions are

also needed:
A1 The observations Y ijX i; V i; Z i from t-JLSM are independently distributed each with the con-

ditional student-t density f ðY ijX i; V i; Z i; νÞ:
A2 The covariates xij; zjk, andwj i ¼ 1; 2; …; m; j ¼ 1; 2; …; ni; k ¼ 1; 2; …; j � 1ð Þ are fixed

and finite. The number of repeated measurements nið Þ are fixed.
A3 The parameter space is compact and the θ0 is in the interior of the parameter space.

The following theorems states the consistency, sparsity and asymptotic normality of θ̂ . The
proofs of Theorems 2 and 3 are very similar to the proofs given by Fan & Li (2001). Here,
we will outline the proof.

Theorem 2 Assume that am ¼ Op m�1=2
	 


; bm→0, and τm→0 asm→∞. Under the conditions

(A1)-(A3), with probability tending to 1 there must exist a local maximiser θ̂m of the penalised

likelihood function S∗ θð Þ such that θ̂m � θ0 ¼ Op m�1=2
� �

.

Proof of Theorem Let ζm ¼ m�1=2 þ am. We just have to specify that for any given ε > 0, there
exists a large constant C such that

lim

m→∞
P

sup

u ¼ C
S θ0 þ ζmuð Þ < S θ0ð Þ

� �
≥ 1 � ε: (A6)

This implies that for large m , with large probability, there is a local maximum in the ball

θ0 þ ζmu; u ≤ Cf g . This local maximiser θ̂, satisfies θ̂ � θ0 ¼ Op ζmð Þ . By the definition of
S ·ð Þ and pτmð0Þ ¼ 0, we have

DmðuÞ ¼ S θ0 þ ζmuð Þ � S θ0ð Þ (A7)
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¼ logL θ0 þ ζmuð Þ � m ∑
s

j¼1
pτjm θ0j þ ζmuj

�� ��	 
� �
� logL θ0ð Þ � m ∑

s

j¼1
pτjm θ0j

�� ��	 
� �
(A8)

≤ logL θ0 þ ζmuð Þ � logL θ0ð Þ½ � � m ∑
s1

j¼1
pτjm θ0j þ ζmuj

�� ��	 
 � ∑
s1

j¼1
pτjm θ0j

�� ��	 
� �
(A9)

where s1 is the number of non-zero elements of the vector θ0. By substituting the first-order Taylor’s
expansions and the triangular inequality, we have

DmðuÞ ≤ ζm l0 θ0ð Þ½ �Tuþ 1

2
uT l00 θ∗ð Þumζ 2m 1þ opð1Þ

	 

(A10)

� ∑
s1

j¼1
mζmp

0
τjm θ0j
�� ��	 


sgn θ0j
	 


uj þ 1

2
mζ 2mp

00
τjm θ0j
�� ��	 


u2j 1þ Op 1ð Þ	 
� �
(A11)

¼ K1 þ K2 þ K3 (A12)

Regularity conditions imply that logL0 θ0ð Þ ¼ Op
ffiffiffiffi
m

pð Þ. Thus, the K1 is of the orderOp
ffiffiffiffi
m

p
ζmð Þ. By

choosing a sufficiently large C, the K1 is controlled uniformly by K2 in u ¼ C. Note that the K3 is
bounded by

∑
s1

j¼1
pτjm θ0j þ ζmuj

�� ��	 
 � ∑
s1

j¼1
pτjm θ0j

�� ��	 
� �
¼ ffiffiffiffi

s1
p

mζmamuþ mζ 2mbmu
2: (A13)

Since it is assumed that am ¼ Op m�1=2
	 


and bm→0 asm→∞, if we choose a sufficiently large
C . it is concluded that K3 is dominated by K2 . Thus, for any given ε > 0 , we have
limm→∞ P supu¼C S θ0 þ m�1=2u

	 

< S θ0ð Þ	 


≥ 1 � ε that is (A6).

Let Fm θð Þ represents the Fisher information matrix of θ; θð1Þ0j is the j-th component of θð1Þ0 ,

define Am ¼ diag p00τm θð1Þ01

��� ���� �
; ; …; p00τm θð1Þ0s1

��� ���� �� �
and cm ¼ p0τm θð1Þ01

��� ���� �
sgn θð1Þ01

� �
;

�
…; p0τm θð1Þ0s1

��� ���� �
sgn θð1Þ0s1

� �
ÞT .

Theorem 3 Assume that the conditions in Theorem 1 are satisfied, and the function pτm θð Þ
satisfies conditions C1–C3. If the penalty function has lim infm→∞lim inf t→0þ

p0τmðtÞ
τm

> 0 when

τm→0 and
ffiffiffiffi
m

p
τm→∞ asm→∞, then for any

ffiffiffiffi
m

p
-consistent estimator θ̂m of θ, asm→∞, we have

(i) Consistency in the variable selection: P θ̂ð2Þ
m ¼ 0

� �
→1,

(ii) Asymptotic normality:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m Fð1Þ

m

	 
q
Fð1Þ
m þ Am

� �
θ̂ð1Þ
m � θð1Þ0

� �
þ Fð1Þ

m þ Am

� ��1
cm

 �
→

D

→
Ns1 0; I s1ð Þ;

where “
→

D
→
” stands for the convergence in distribution; Fð1Þ is the s1 � s1ð Þ submatrix of n cor-

responding to the non-zero components θð1Þ0 and I s1 is the s1 � s1ð Þ identity matrix.
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Proof of Theorem We first prove part (I). From τmax→0, it is easy to show that am ¼ 0 for large

m. Consider the partition θ¼ θð1Þ; θð2Þ
	 


for any θ in the neighbourhood θ � θ0 ¼ Op m�1=2
	 


. Sec-

ond, we prove that for any given θð1Þ satisfying θð1Þ � θð1Þ0 ¼ Op m�1=2
	 


and any constant C > 0,

we have

S θð1Þ; 0
� �

¼ max
θð1Þ ≤ Cm�1=2

< S θð1Þ; θð2Þ
� �

: (A14)

In fact, for any θj ðj ¼ s1 þ 1; …; sÞ, using the Taylor expansion, we obtain

∂S θð Þ
∂θj

¼ ∂logL θð Þ
∂θj

� mp0τjm θj
�� ��	 


sgn θj
	 


(A15)

¼ ∂logL θ0ð Þ
∂θj

þ ∑
s1

t¼1

∂2logL θ∗ð Þ
∂θj∂θt

θt � θ0tð Þ � mp0τjm θj
�� ��	 


sgn θj
	 


(A16)

where θ∗ lies between θ and θ0. In addition, we have

1

m

∂logL θ0ð Þ
∂θj

¼ Op m�1=2
� �

(A17)

and

1

m

∂2logL θ0ð Þ
∂θj∂θt

� E
∂2logL θ0ð Þ
∂θj∂θt

� �� �
¼ Opð1Þ: (A18)

Note that θ̂m � θ0
�� �� ¼ Op n�1=2

� �
, we have

∂S θð Þ
∂θj

¼ �mτjm τ�1
jm p0τjm θj

�� ��	 

sgn θj
	 
þ Op m�1=2τ�1

jm

� �� �
: (A19)

From the assumption given in the theorem, we obtain

lim inf lim inf τ�1
jm p0τjm θj

�� ��	 

> 0; andτ�1

jm m�1=2→0 (A20)

So that

∂S θð Þ
∂θj

< 0; for0 < θj < Cm�1=2; (A21)

∂S θð Þ
∂θj

> 0; for � Cm�1=2 < θj < 0 (A22)

Therefore, S θð Þ achieve its maximum at θ¼ θð1ÞT ; 0T
	 
T

and this completes the proof of the first
part of theorem.
Second, we study the asymptotic normality of θ̂ð1Þ

m . From Theorem 1 and the first part of Theorem

2, there exists a penalised maximum likelihood estimator θ̂ð1Þ
m that is the

ffiffiffiffi
m

p � consistent local

maximiser of the function S θð1Þ; 0
	 


. The estimator θ̂ð1Þ
m must satisfy
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0 ¼ ∂S θð Þ
∂θj

����
θ¼ θð1ÞT ; 0Tð ÞT

� mp0τjm θ̂ð1Þmj

��� ���� �
sgn θ̂ð1Þmj

� �
(A23)

¼ ∂logL θ0ð Þ
∂θj

þ ∑
s1

t¼1

∂2logL θ0ð Þ
∂θj∂θt

þ Opð1Þ
� �

θ̂ð1Þmt � θð1Þ0t

� �
� mp0τjm θð1Þ0j

��� ���� �
sgn θ̂ð1Þ0j

� �
(A24)

�m p00τjm θð1Þ0j

��� ���� �
þ Opð1Þ

h i
� θ̂ð1Þmj � θð1Þ0j

� �
(A25)

In other words, we have

∂2logL θ0ð Þ
∂θð1Þ∂ θð1Þ

	 
T þ mAm þ Opð1Þ
" #

θ̂ð1Þ
m � θð1Þ0

� �
þ cm ¼ ∂logL θ0ð Þ

∂θð1Þ
(A26)

Using the Lyapunov form of the multivariate central limit theorem, we obtain

1ffiffiffiffi
m

p ∂logL θ0ð Þ
∂θð1Þ

→
D
N 0; I ð1Þ
� �

: (A27)

Note that

1

m

∂2logL θ0ð Þ
∂θð1Þ∂ θð1Þ

	 
T � E
∂2logL θ0ð Þ
∂θð1Þ∂ θð1Þ

	 
T
" #( )

¼ Op 1ð Þ (A28)

it follows immediately by using Slustky’s theorem thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m Fð1Þ

m

	 
q
Fð1Þ
m þ Am

� �
θ̂ð1Þ
m � θð1Þ0

� �
þ Fð1Þ

m þ Am

� ��1
cm

 �
→

D
→
Ns1 0; I s1ð Þ:

[Received July 2023; accepted April 2024]
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